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ABSTRACT

This paper describes a portion of the OFMspert (Operator Function Model Expert System) research
project. OFMspert is an architecture for an intelligent operator’s associate or assistant that can aid the
human operator of a complex, dynamic system. Intelligent aiding requires both understanding and control.
This paper focuses on the understanding (i.e., intent inferencing) ability of the operator’s associate. Under-
standing or intent inferencing requires a model of the human operator; the usefulness of an intelligent aid
depends directly on the fidelity and completeness of its underlying model. The model chosen for this
research is the operator function model (OFM) (Mitchell. 1987). The OFM represents operator functions,
subfuncuons, tasks, and actions as a heterarchic-hierarchic network of finite state antomata, where the arcs
in the network are system triggering events. The OFM provides the structure for intent inferencing in that
operator functions and subfunctions correspond to likely operator goals and plans. A blackboard system
similar to that of HASP (Nii et al., 1982) is proposed as the implementation of intent inferencing function.
This system postulates operator intentions based on current system state and attempts to interpret observed
operator actions in light of these hypothesized intentions. The OFMspert system built for this research is
tailored for the GT-MSOCC (Georgia Tech Multisatellite Operations Control Center) simulation. The GT-
MSOCC OFMspent has been the subject of rigorous validation studies (Jones, 1988) that demonstrate its
validity as an intent inferencer.
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INTRODUCTION

Computational representations and models have been constructed for "undersianding” human
behavior in many applications; e.g., understanding natural language (Winograd, 1972) and understanding
stories (Schank and Abelson, 1977). Artificial intelligence has developed many representational formal-
isms and control strategies that are intended to mimic "intelligent” behavior (cf Cohen and Feigenbaum,
1982). In the field of human-machine systems research, Al techniques offer powerful methodologies for

understanding human behavior in the context of human-machine interaction.

Our particular concern is with human-machine interaction in the control of complex dynamic systems
(e.g., nuclear power plants). Such systems are highly automated; thus, the human operator acts as a super-
visory controller (Sheridan and Johannsen, 1976; Rasmussen, 1986; Wickens, 1984). Supervisory control
typically consists of routine monitoring and fine-tuning of system parameters. However, in the event of
abnormal or emergency situations, the human operator is expected o detect, diagnose, and compensate for
system failures. The ability of a supervisory controller to cope with such simations can be severely limited.
Wickens (1984) cites several problems with supervisory control: an increased monitoring load; a "false
sense of security™ whereby the operator trusts the automation 10 such an extent that any human intervention
or checking seems unnecessary; and "out-of-the-loop familiarity” that implies a reduced ability to cope with
non-routine situations.

An important question then becomes how to improve system performance and safety in supervisory
control. The answer is not to automate the humar out of the system; today’s technology cannot match the
human’s ability o cope with uncentain and nowve! situations (Chambers and Nagel, 1985). Rather,
automated systems must support the human operator  Given that the human will remain an integral part of
a complex system, a potential approach to advanced automation is that of "amplifying” rather than automat-

ing human skills (Woods, 1986).

The OFMspert (Operator Function Model Expert System) project is an effort to develop a theory of
human-computer interaction in supervisory control. OFMspert itself is a generic architecture for a

computer-based operator’s associate. The operator’s associate (and similarly, the Pilot’s Associate (Rouse
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et al. 1987; Chambers and Nagel, 1985)) represents a design philosophy that allows the human to remain in
control of a complex system. The computer-based associate is a subordinate to which the human operaior
can delegate control activities. The associate also actively monitors sysiem state and operator actions in
order to timely, context-sensitive advice, reminders, and suggestions. The intent is to provide intelligent

support for the human operator.

The intelligence and utility of the operator’s associate rest on its abilities to understand the operator’s
current intentions in order to provide context-sensitive advice and assume responsibility given for portions
of the control task. Models of human-machine interaction offer a variety of frameworks for understanding
human behavior (i.e., inferring intentions) in the control of a complex dynamic system (see Jones and
Mitchell, 1987, and Jones, 1988, for a review). Knowledge-based problem solving strategies are tools for
implementing and reasoning with the knowledge represented in the human-machine interaction model.

OFMspert combines a particular human-machine interaction model (the operator function model (OFM)

(Mirtchell, 1987)) and knowledge-based problem solving approach (the blackboard model of problem solv-.

ing (Nii, 1986)) to provide the understanding capability necessary for an effective operator’s associate
(Rubin, et al., 1987). In the next sections, the OFM and the blackboard model of problem solving are
described. Next, ACTIN (Actions Interpreter), the intent inferencing component of OFMspert, is discussed,
along with a detailed example of how ACTIN infers operator intentions dynamically. Finally, experimental

results that validate ACTIN’s intent inferencing ability are considered.

THE OPERATOR FUNCTION MODEL

The operator function mode! (OFM: [Mitchell, 1987) provides a flexible framework for represcating
operator functions in the control of a compiex dynamic system. The OFM represents how an onerator
might organize and coordinate system control functions. Mathematically, the OFM is a hierarchic-
heterarchic network of finite-state automata. Network nodes represent operator activities as operator func-
tions, subfunctions, tasks, and actions. Operator functions are organized hierarchically as subfunctions,

tasks, and actions. Each level in the network may be a heterarchy, i.e., a collection of activities that may be
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performed concurrently. Network arcs represent system triggering events or the results of operator actions
that initiate or terminate operator activities. In this way, the OFM accounts for coordination of multiple

activities and dynamic focus of attention.

Historically, the OFM is related to the discrete control modeling methodology (Miller, 1985;
Mitchell and Miller, 1986). The OFM is distinguished by its modeling of both manual and cognitive opera-
tor actions in the context of system triggering events. Manual actions are system reconfiguration com-
mands. Cognitive actions include information gathering and decisioﬁ making that are typically supported

by information requests.

The OFM is a prescriptive mode! of human performance in supervisory control. Given system

triggering events, it defines the functions, subfunctions, tasks, and actions on which the operator should
focus. Used predictively, the OFM generates expectations of likely operator actions in the context of
current system state. Used inferentially, the OFM defines likely operator functions, subfunctions, and tasks
that can be inferred based on operator actions and system state. Thus, the OFM for a particular domain
defines the knowledge needed to perform intent inferencing. What is needed next is a problem solving stra-

tegy to use this knowledge.

THE BLACKBOARD MODEL OF PROBLEM SOLVING

OFMspert’s intent inferencing component, called ACTIN (Actions Interpreter), uses the HASP
blackboard model of problem solving (Nii et al, 1982; Nii, 1986). The HASP blackboard is one of the few
artificial intelligence systems tha: explicitly addresses real-time problem solving in dynamic environments.

The blackboard model of problem solving consists of three components: the blackboard, knowiedge
sources, and blackboard control. The blackboard is a data structure on which the current best hypothesis of
the solution is maintained and modified. The hypothesis is represented hierarchically, at various levels of
abstraction, and evolves incrementally over time as new data become available or old data become
obsolete. Domain-specific knowledge is organized as a collection of independent knowledge sources.

Knowledge sources are responsible for posting and interpreting information on the blackboard. Blackboard
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control applies knowledge sources opportunistically; that is, in either a top-down or bottom-up manner,

depending on what is more appropriate in the current context.

The blackboard mode! of problem solving is compatible with the knowledge represented in the OFM.
Both models use a hierarchical representation. The blackboard knowledge sources provide a modularity
that naturally represents much of the domain knowledge contained in the OFM arcs. The opportunistic
control strategy offers the dynamic flexibility necessary for inferring intentions in real ime. ACTIN com-
bines the OFM representation of domain knowledge and the blackboard model of problem solving 10

dynamically construct and assess current operator intentions.

ACTIONS INTERPRETER (ACTIN)

ACTIN's blackboard represents operator intentions as a hierarchy of goals, plans, tasks, and actions
that correspond to the OFM’s hierarchy of functions, subfunctions, tasks, and actions. Goals are currently
instantiated functions, plans are currently instantiated subfunctions, and so on. In some respects, ACTIN is
a process model that uses the blackboard problem solving method to build a dynamic representation of

current operator intentions based on the OFM’s static knowledge (Wenger, 1987).

The general mechanism for the blackboard approach to intent inferencing is as follows. Given an
OFM, currently hypothesized goals, plans, and tasks (GPTs) or sometimes additional plans and tasks (PTs)
for an existing goa! are placed on the blackboard in response to system triggering events. The blackboard
Incorporates operatsr actions into the representation with opportunistic reasoning. Thus, actions can be
immediately interprzi2d as supporting one or more current goals, plans, and tasks: and goals, plans, and

tasks can be inferred on the basis of operator actions.

Construction knowledge sources are responsible for building the representation of goals, plans, tasks,
and actions. These knowledge sources can further be characterized as either model-driven or data-driven.
Model-driven knowledge sources are those that post GPT information on the blackboard in response to sys-
tem triggering events as defined by the OFM. Data-driven knowledge sources are those that post operator

actions and attempt to infer support for any current tasks on the blackboard. Data-driven knowledge



sources may also postulate GPT information on the basis of operator actions. Assessment knowledge
sources are responsibie for evaluating the extent 1o which operator actions support currently hypothesized
goals, plans, and tasks. Assessments are always made in the context of a particular goal or plan which

forms the context for possible advice or reminders.

In order to illustrate ACTIN’s dynamic intent inferencing, it is first necessary to describe the applica-
tion domain for which our OFMspert was built: the Georgia Tech Multisatellite Operations Control Center
(GT-MSOCC). After describing GT-MSOCC and its OFM, an example of ACTIN’s intent inferencing is

presented.

GT-MSOCC: APPLICATION DOMAIN

GT-MSOCC is a real time, interactive simulation .of MSOCC, a NASA ground control station for
near-earth satellites (Mitchell, 1987). MSOCC is a facility for capturing and processing data sent by satel-
lites (see Figure 1). GT-MSOCC is a research doﬁain designed to supi)on theoretical and empirical
research on human-computer interaction in the context of a complex dynamic system. It is a high fidelity
simulation of the operator interface to an actual NASA ground contro! system. For more detail, see

Mitchell, 1987.

GT-MSOCC operator activities are defined by the GT-MSOCC OFM. At the highest level of the
GT-MSOCC operator function model are major cperator functions and the system events that cause the
operator to transition among functions (see Figure 2). This level of description represents operator goals in
the contex: ¢f curren: svstem state. The arcs define system events that rigger a refocus of attention or the
addition of 2 runctuion to the current set of operator duties.

The default high-level function is to control current missions. This involves the subfunctions of
monitoring data transmission and hardware status, detection of data transmission problems, and compensa-
tion for failed or degraded equipment. Each subfunction is further defined by a collection of tasks, which in

turn are supported by operator actions (system reconfiguration commands or display requests).
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Figure 1. Multisatellite Operations Control Center (MSOCC)

System triggering events cause the operator to focus attention on other high-level functions. An
unscheduled support request causes the operator to shift to the "configure to meet support requests” func-
ton. An error message from the automatic scheduler causes the operator to transition to the function to
compensate for the automated schedule failure. A request to deconfigure a mission causes the operator to
shift 1o the function of deconfiguring a manual mission configuration. Finally, the operator may engage in
long-term planning in the absence of other system wriggering events. Upon the termination .of these other
funcuons, the operator resumes the default control of current missions function. Functions mayv be ter-

minated by their successful completion or the determination ¢hat they cannot be completed.

ACTIN’S INTENT INFERENCING WITH GT-MSOCC

In this section, a detailed example of ACTIN’s intent inferencing is provided in the context of GT-
MSOCC. Table 1 shows the organization of GT-MSOCC goals, plans, tasks, and actions, as defined by the

GT-MSOCC OFM. Given system triggering events, ACTIN’s model-driven knowledge sources post the
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Figure 2. GT-MSOCC Operator Functions
appropriate goal, plan, and task (GPT) structures on the blackboard. When operator actions occur,
ACTIN’s data-driven knowledge sources post actions on the blackboard and attempt to "connect” the
actions to tasks which they support. This "connection” between actions and tasks defines ACTIN’s intent
inferencing capability. The knowledge of appropriate inferences of intent is contained in a data structure
that matches actions to task types. Data-driven knowledge sources consult this structure to determine that
task type(s) that a current operator action can support. They then search the blackboard's task level of

abstraction for those types, and connect the action to all appropriate tasks.

To illustrate ACTIN’s dynamic construction of operator intentions, consider the following scenario
from GT-MSOCC. The scenario is described in terms of GT-MSOCC system events and operator actions,
which then cause activity on the blackboard. ACTIN’s intent inferencing results in statements written to a
logfile. In the accompanying figures, the current blackboard structure is shown, along with ACTIN’s infer-

ences of intent.

1). The PM mission is automatically configured. ACTIN’s model-driven knowledge sources post the

goal 1o control the current mission (CCM) for PM. This goal is comprised of two plans: to monitor data
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Table 1. GT-MSOCC Goals, Plans, Tasks, and Actions
Goals Plans Tasks Actions
Control current mission Monitor software (MSW) Check MOR (CMOR) telem
com Check endpoints (CEND)  rup/gw/vip/cms telem
Monitor hardware (MHW) Check hardware (CHW) -
Manual Configure Request Check system constraints (CSC) Check current
number of -
o missions (CCNM)
Check mission msocc sched, msn scheds
scheduie (CMS)
Check scheduled msocc sched,pending
number of
missions (CSNM)
Check mission requirements (CMR) Check mission msocce sched. msn scheds
template (CMT)
Identify candidate hardware (ICH)  Find current (FCUR) -
Find unscheduled (TUSC) equip scheds, avails
Answer question (ANQ) Execute answer(XAN) operalor answer
Execute configure (XCON) manual config. (MCON)
events
Compensate for Reconfigure (RCON) Find duration (FDUR) telem, pending
Schedule Faiiure Execute man. reconfig (MRCO),
: reconfigure(XRCO) events
CFSF For each
equipment;
Find current (FCUR) -
Find unscheduled (FUSC)  equip scheds, avails
—_— Manual Deconfigure Request (DCON) Execute man. deconfig(MDCO),
deconfigure (XDCO)} events
_— Troubleshoot (TBLS) Check endpoints (CEND) gw/rup/cmsvip telem
Check interior (CIN) nas/tac/ap/modian telem
—_— : Replace(MRPL or SRPL) Find duration (FDUR) telem, pending
Find current (FCUR) -
Find unscheduled (FUSC) equip scheds, avails
Execute replace(XRPL) replace (RPL)

transmission or software (MSW) and to monitor hardware status (MHW). Each plan is composed of one or
more tasks. The monitor software plan consists of two tasks: to check data flow at the MOR (CMOR) and
to check data flow at endpoint equipment (CEND). The monitor hardware plan consists of the single task
to check hardware status (CHW). This entire GPT structure defines the control of current mission function

prescribed by the OFM. When PM is configured, ACTIN’s knowledge sources retrieve the control of



current mission GPT structure, fili in mis.sion-speciﬁc information (e.g., the name of this particular mission
is PM), and post the structure on the blackboard. The resulting blackboard is shown in Figure 3a.

2). Another mission (Geographic Explorer, or GEO) is configured. In the same way the control of
current mission GPT was posted for PM, a control of current mission GPT for GEO is also posted. The
resulting blackboard is shown in Figure 3b.

3). The operator requests the main telemetry page ("telem”). ACTIN’s data-driven knowledge
sources determine that the current action type is "telem"” and that actions of this type potentially support the
tasks of checking the MOR (CMOR) and finding the duration (FDUR) of current missions. Upon examin-
ing the tasks level of the blackboard, the knowledge sources find that two eligible tasks are posted: the
CMOR tasks for PM and GEO. Thus, the "telem” action is posted and connected to the CMOR tasks. The
resulting blackboard is shown in Figure 3c.

4). The operator requests the gateway telemetry page ("GwTelem”). ACTIN’s data-driven knowledge

sources determine that the current action type is "GwTelem" and that actions of this type potentially

Gae> (o> Gend

Figure 3a. Blackboard after PM is configured.
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Figure 3b. Blackboard after GEO is configured.
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Figure 3c. Blackboard after Telem page request.
support the tasks of checking the endpoint equipment (CEND) of current missions. Upon examining the

tasks level of the blackboard, the knowledge sources find that two eligible tasks are posted: the CEND
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tasks for PM and GEO. Thus, the "GwTelem" action is posted and connected to the CEND tasks. The

resulting blackboard is shown in Figure 3d.

S). One of the components used by PM experiences a hardware failure. The component in this exam-
ple is RUP2. Upon the occurrence of this triggering event, ACTIN’s model-driven knowledge sources post
a plan to replace the failed component, along with the four associated tasks of finding a currently available
replacement (FCUR), finding the duration of the mission (FDUR), finding an unscheduled replacement

(FUSC), and executing the replace command (XRPL). The resulting blacicboard is shown in Figure 3e.
6). The operator again requests the main telemetry page. This time ACTIN's knowledge sources
determine that this action can support three tasks on the blackboard: FDUR for RUP2 and CMOR for both

PM and GEO. The resulting blackboard is shown in Figure 3f.

7). The operator requests the schedule for RUP1 ("RuplSched”). ACTIN’s data-driven knowledge
sources determine that the current action type is "Rup1Sched” and that actions of this type potentially sup-

port the task of finding unscheduled equipment (FUSC) for RUP components. Upon examining the tasks

@@ @O
Cere X on Lol o X e
Ca e

GwTelem is interpreted as supporting CEND for PM, CEND for GEO

Figure 3d. Blackboard after GwTelem page request.



Figure 3e. Blackboard after RUP2 hardware failure.

Telem is interpreted as supporting CMOR for PM, CMOR for GEO, FDUR for RUP2

Figure 3f. Blackboard after Telem page request.
level of the blackboard, the knowledge sources find thai one eligible task is posted: the FUSC task for

I RUP2. Thus, the "RuplSched” action is posted and connected to the FUSC task associated with the RUP2
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replace plan. The resulting blackboard is shown in Figure 3g.

8). Finally, the operator requests the schedule for NASS. ACTIN’s data-driven knowledge sources
determine that this request potentially supports finding unscheduled NAS components (i.e., the FUSC task
associated with any NAS component). However, although a FUSC type task is posted, it is not associated
with a NAS type component. ACTIN is unable to interpret this request as supporting any cm'rcﬁt tasks.
Thus, the "Nas5Sched” request action is posted, but not connected to any current tasks. Figure 3h illustrates

the resulting blackboard.

Several characteristics of ACTIN’s interpretation algorithm are notable. First, actions are immedi-
ately connected to whatever appropriate tasks exist on the blackboard at the time the actions are posted.

Connection links are not inferred after the action is posted.
Another important feature is ACTIN’s property of maximal connectivity. That is, ACTIN interprets
actions in the broadest possible context, assuming that the operator is extracting the maximum amount of

information from the display pages requested. In the example above, ACTIN inferred that the second telem

Rup1Sched is interpreted as supporting FUSC for RUP2

Figure 3g. Blackboard after Rupl Schedule request.
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Figure 3h. Blackboard after NasS Schedule Request.
action supported all current CMOR tasks as well as thé FDUR task for RUP2. Thus, the operator is "given

the benefit of the doubt” in the evaluation of performance.

The evaluation of operator performance is performed by knowledge sources that assess the degree to
which operator actions support current tasks (and by extension, plans and goals). ACTIN schedules assess-
ments periodically in the context of particular goals or plans. In the example above, ACTION schedules
separate assessments for the control of current mission goals for PM and GEO, and the replace plan for
RUP2. Assessments note the number of supportng actions and the time at which those actions occurred.
The assessments for PM and GEO would note tha: the CMOR task is supported by two actions and the
CEND task is supported by one action. RUP2’s replace plan assessment would state that one action sup-
ports the FDUR task and one action supports the FUSC task. The results of these assessments are written
to a logfile.

To summarize, the proposed model for intent inferencing uses the OFM methodology to postulate

operator functions, subfunctions, and tasks on the basis of current system state and observed operator

actions. This mode] has been implemented using a blackboard architecture. This structure, of which the
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scenario described in this section is an example, defines the context for intent inferencing.

The OFM and its implementation in ACTIN is an example of "the middle ground” in theorv con-
struction in cognitive science (Miller, Polson, and Kintsch, 1984). The theory has well-defined structures
and processes to "support both the instantiation of the theory as an executable computer program and quali-
tative experimental studies of the theory” (Miller, Polson, and Kintsch, 1984, p. 13). In the next section the
validation of the proposed model is explored A two-stage framework for validation is proposed, and

experimental results are briefly discussed.

EXPERIMENTAL VALIDATION

Validation of intent inferencing assures that the system is correctly inferring the intentions of the
human operator. Within the context of the OFM structure of intendons, this means that the system infers
support for the same tasks (and by extension, plans and goals) as the human, given the same set of operator
actions. The "human” in this case can be a human domain expert performing a post hoc analysis, or the
human operator giving an (on-line) account of intentions. Thus, the proposed two-part framework for the
validation of intent inferencing is 1.) comparison of expert and OFMspert analyses; and 2.) comparison of

concurrent verbal protocols and OFMspert analysis (see Jones, 1988, for more detail).

The experimental validation of ACTIN’s intent inferencing was conducted in two studies. In Experi-
ment 1, a domain expert’s interpretations of operator data were compared to ACTIN’s interpretations of
those same actions on an action-by-action basis. In Experiment 2, verbal protocols were collected from
GT-MSOCC operators while they were conrolling GT-MSOCC. Statements of intentions for each action

were compared to ACTIN's interpretations.

The results of these studies are discussed in detail in Jones (1988). Overall, the results showed that
ACTIN’s intent inferencing ability compared favorably to inferences made by a domain expert and state-

ments from verbal reports.
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